Improving Recommendation via Inference of User Popularity Preference in Sparse Data Environment
نویسندگان
چکیده
منابع مشابه
Social recommendation via multi-view user preference learning
Recommender system (RS) has become an active research area driven by the enormous industrial demands. Meanwhile, with the rapid development of microblogging system, various kinds of social data are available, which provide opportunities as well as challenges for traditional RSs. In this paper, we introduce the social recommendation (SR) problem utilizing microblogging data. We study this proble...
متن کاملMaking sense of sparse rating data in collaborative filtering via topographic organization of user preference patterns
We introduce topographic versions of two latent class models (LCM) for collaborative filtering. Latent classes are topologically organized on a square grid. Topographic organization of latent classes makes orientation in rating/preference patterns captured by the latent classes easier and more systematic. The variation in film rating patterns is modelled by multinomial and binomial distribution...
متن کاملA Sparse Probabilistic Model of User Preference Data
Modern recommender systems rely on user preference data to understand, analyze and provide items of interest to users. However, for some domains, collecting and sharing such data can be problematic: it may be expensive to gather data from several users, or it may be undesirable to share real user data for privacy reasons. We therefore propose a new model for generating realistic preference data...
متن کاملAnalyzing User Preference for Social Image Recommendation
With the incredibly growing amount of multimedia data shared on the social media platforms, recommender systems have become an important necessity to ease users’ burden on the information overload. In such a scenario, extensive amount of heterogeneous information such as tags, image content, in addition to the user-to-item preferences, is extremely valuable for making effective recommendations....
متن کاملUser Preference Through Learning User Profile for Ubiquitous Recommendation Systems
As ubiquitous commerce is coming, the ubiquitous recommendation systems utilize collaborative filtering to help users with fast searches for the best suitable items by analyzing the similar preference. However, collaborative filtering may not provide high quality recommendation because it does not consider user’s preference on the attribute, the first rater problem, and the sparsity problem. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEICE Transactions on Information and Systems
سال: 2018
ISSN: 0916-8532,1745-1361
DOI: 10.1587/transinf.2017dap0024